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Abstract
This paper proposes an agent-based optimistic policy iteration (OPI) scheme for learning stationary
optimal stochastic policies in multi-agent Markov Decision Processes (MDPs), in which agents incur
a Kullback-Leibler (KL) divergence cost for their control efforts and an additional cost for the joint
state. The proposed scheme consists of a greedy policy improvement step followed by an m-step
temporal difference (TD) policy evaluation step. We use the separable structure of the instantaneous
cost to show that the policy improvement step follows a Boltzmann distribution that depends on
the current value function estimate and the uncontrolled transition probabilities. This allows agents
to compute the improved joint policy independently. We show that both the synchronous (entire
state space evaluation) and asynchronous (a uniformly sampled set of substates) versions of the OPI
scheme with finite policy evaluation rollout converge to the optimal value function and an optimal
joint policy asymptotically. Simulation results on a multi-agent MDP with KL control cost variant of
the Stag-Hare game validates our scheme’s performance in terms of minimizing the cost return.

1 Introduction

Consider the two-agent MDP version [12] of the Stag-Hare game [21] where two hunters move on a gridworld to hunt
hares or a stag (see Figure (1) for an illustration). Each hunter can only determine their own next position (local state)
in this world by moving to a neighboring grid, but their costs are determined based on their joint position (state), and
whether they hunt a stag or a hare. The hunters can individually hunt a hare, but need to coordinate together to be able
to hunt a stag. Considering the returns are the same amongst the hunters, this setting is an example of a multi-agent
Markov decision process (MDP), in which each agent has control of its local state but there is a common value function
(identical interest) that depends on the joint state.

We assume the instantaneous costs are decomposed into two parts: an identical cost term that only depends on the
joint state, and another term that captures the cost of control. The cost of control is measured by the KL divergence
between the uncontrolled transition probabilities and transition probabilities collectively chosen by the agents. The KL
cost represents the control cost the agents are willing to pay in order to modify the uncontrolled transition probability



Simulation-Based Optimistic Policy Iteration For Multi-Agent MDPs with Kullback-Leibler Control Cost

Figure 1: A multi-agent MDP with KL control cost: Two hunters hunting either hares or a stag on a 5 × 5 gridworld.
See Section (6) for details.

function. We coin the class of MDPs we consider as the multi-agent MDPs with Kullback-Leibler (KL) control cost
which stem from the linearly solvable MDPs [22, 23] and the adversarial linearly solvable Markov games [8].

In the proposed Kullback-Leibler controlled optimistic policy iteration (KLC-OPI) scheme, each agent straddles between
policy improvement and policy evaluation steps as is the case with the single agent OPI [16]. Optimistic policy iteration
generalizes value iteration and policy iteration methods by considering a finite m-step temporal difference (TD) rollout
in the policy evaluation step, where we obtain the value iteration method when m = 1 and the policy iteration method
when m→ ∞. In the policy improvement step, the agents update their policies greedily considering their current policy
valuations. The updated policies are then evaluated using the finite m-step TD rollout with sampled trajectories, where
agents concurrently generate trajectories for each joint state in the joint state space, and compute the discounted returns.
The m-step TD rollout allows for a less noisy unbiased estimation of the policy compared to value iteration, while
performing a finite rollout remains practically viable in contrast to policy iteration.

The instantaneous cost decomposition along with the infinite horizon discounted sum of the costs render a close form
for the greedy optimal policies, that follow a Boltzmann distribution using a Cole-Hopf transformation of the value
function (Lemma 4.1). The resultant controlled transition probabilities selects next states inversely proportional to the
exponent of the states’ cost returns. That is, the KL control cost minimization solution results in a stochastic policy
that only depends on the uncontrolled transition probability function and the current value function estimate, which
eliminates the combinatorial search over the state-action space. Indeed, we do not need to restrict the action space to be
finite, and allow the individual action spaces to be continuous. In addition, each agent can sample their next sub-state
from its marginal controlled policy having computed the closed-form joint policy.

For simulation-based policy iteration schemes, a synchronous policy evaluation step requires simulating a trajectory for
each joint state in the state space. We also consider the asynchronous implementation of the KLC-OPI where a subset of
the joint state space is evaluated per iteration, potentially eliminating the need to run trajectories for each joint state.
We show that the asynchronous version of the KLC-OPI, namely ASYNC-KLC-OPI, can be related to the synchronous
version of the scheme. We analyze the asymptotic convergence of the two schemes, KLC-OPI and ASYNC-KLC-OPI,
and prove given standard assumptions on the learning rate and the initialized value functions, that the schemes’ iterates
asymptotically converge to the optimal value function for all agents and to an optimal joint policy (Theorem 4.4 and
Corollary 5.2, respectively). Finally, simulation results on the aforementioned multi-agent MDP variant of the Stag-Hare
game show that the scheme is able to learn a joint policy that minimizes the cost return (Section (6)).

2 Related Work and Contributions

2.1 Simulation-Based Optimistic Policy Iteration

Optimistic, also known as simulation-based modified, policy iteration methods are preferred in settings with large
state spaces due to their fast convergence [20]. However, the theoretical underpinnings of this practical success remain
unclear. The pioneering theoretical guarantee for OPIs with Monte-Carlo estimation established convergence assuming
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infinitely long trajectories that start from each state at every iteration [24]. Indeed, we follow the same proof structure
here but consider finitely long trajectories. Similar, OPI schemes were considered for the stochastic shortest path
problem in [6, 14]. More recent efforts focused on showing convergence of finite-step rollouts during the policy
evaluation step after applying multi-step greedy or lookahead policies [9, 27, 28]. In particular, prior the asymptotic
error bound was strengthened in [28] using stochastic approximation techniques for the setting where policy evaluation
is done using only a single Monte-Carlo trajectory in each iteration. In contrast to these works, we prove asymptotic
convergence to the optimal value function and an optimal joint policy without requiring a lookahead operation, i.e., a
greedy improvement, while also performing a finite rollout in each iteration (Theorem 4.4). Our asymptotic convergence
proof technique is applicable to any single-agent MDP with deterministic policies, not just MDPs with KL control costs.

2.2 Decentralized Learning in Multi-Agent MDPs and Markov Games

The KLC-OPI scheme considers multiple agents that perform the policy improvement step independently of other agents
using an agent-local estimate of the value function (Lemma 4.1). Thus, the proposed scheme falls under the framework
of multi-agent reinforcement learning (MARL) [29], which has seen growing interest in the context of learning in
identical interest or potential games [13, 11, 25], zero-sum Markov games [17, 18, 4], and multi-agent systems with KL
control cost [5]. The considered multi-agent MDP framework is also equivalent to identical-interest Markov games or
Markov cooperative games considered in [13, 7], where the costs/rewards are identical for all the agents.

Work on Markov games consider either policy gradients, in which agents consider parameterized policies updated
using gradients computed through episodic returns [13, 1], or a combination of standard learning protocols, e.g.,
best-response, fictitious, with a standard reinforcement learning algorithm, e.g., Q-learning [18]. Policy gradient
methods are applicable to continuous state and action spaces’ environments, but they suffer from large variance and the
convergence rate being sensitive to the choice of parameters.

Recently, localized policy iteration methods for networked multi-agent systems [30] and zero-sum games [2] are shown
to converge near globally optimal policy. These schemes are based on state space partitioning with policy dependent
mapping that gives a uniform sup-norm contraction property which enables convergence of the algorithms to the optimal
value functions.

The proposed KLC-OPI scheme is a novel agent-based learning scheme that is shown to carry over the convergence
properties of OPI designed for single-agent MDPs to the multi-agent MDP with KL control cost setting. The KL cost
structure allows for continuous action spaces through the close-form solution to the policy improvement step.

3 Multi-Agent MDPs With KL Control Cost

We consider an infinite-horizon discounted n-agent MDP given as the tuple Γ := {N ,S, {A}ni=1, P, ρ,C, γ} with a finite
number of playersN := {1, . . . , n}, finite joint state space S, and a continuous action spaceA = Ai=1×Ai=2× . . .×Ai=n.
The transition probability function P : S × A → ∆(S) determines the transition probability to the next joint state
st+1 ∈ S given the joint state st ∈ S and joint action profile at at time step t ∈ N+. The initially sampled joint state is
chosen from a prior ρ, for which we assume ρ(s) > 0 for all joint states s ∈ S.

The intrinsic joint state cost function is defined as C : S → R.

As done in [22] for single-agent linearly solvable MDPs, in multi-agent MDPs with KL control cost, the one-step cost
function is composed of two terms: the intrinsic joint state cost function C, and the control cost, measured using the
Kullback-Leibler (KL) divergence between the controlled and uncontrolled transition probability function. Finally,
γ ∈ [0, 1) is the discount factor.

3.1 Stochastic Joint and Marginal Policies

In the KL control setting, agents pick a joint policy by re-weighting P with a continuous-valued action profile a ∈ A
that directly specifies the transition probability from s to s′ ∈ S. Hence, the agents avoid the combinatorial search over
the state-action space for an action profile that is then applied to the transition probability function P.

Assumption 3.1. The joint state st ∈ S at time step t is composed of n sub-states where the sub-state si,t ∈ Si can only
be controlled by agent i at time step t. The joint state is then st = [s1,t, s2,t, . . . , sn,t].

Given Assumption 3.1, the joint state space can be written as S = S1 × S2 × . . . × Sn. Moreover, and similar to
product games [10], the multi-agent MDP with KL control cost transition structure is derived by taking the product of
n Markov transition structures. Agent i ∈ N only controls their sub-state transitions through a probability transition
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function Pi : S × Ai → ∆(Si) such that P = ×i∈NPi. Agent i obtains its uncontrolled transition probability function
Pi,0 : S → ∆(Si) by applying action ai = 0 such that the transition probability for any s′i ∈ Si and s ∈ S

Pi,0(s′i |s) = Pi(s′i |s, ai = 0). (1)

Assumption 3.2. Given Γ and a joint state s ∈ S, the uncontrolled transition probabilities of agents’ sub-states are
equal, i.e., Pi,0(s′i |s) = P j,0(s′j|s) for all s′i = s′j sub-state pairs and for all agent pairs i, j ∈ N .

Given Assumptions 3.1 and 3.2, the uncontrolled transition probability function P0 : S → ∆(S) can be written for any
state s ∈ S

P0(s′|s) =
n∏

i=1

Pi,0(s′i |s). (2)

In this sense, when no re-weighting is made of P, i.e. a = 0, we obtain the uncontrolled transition probability function
P0. Note that, given Assumption 3.2, agent i ∈ N only requires the knowledge of Pi,0 for every joint state s ∈ S in
order to compute P0.

Let πP0 ∈ Π be the joint stochastic policy, or simply the joint policy, from the class of model-dependent stochastic
policies Π given the uncontrolled transition probability function P0. The joint policy is equal to a re-weighting of P with
a continuous-valued action profile such that for any s, s′ ∈ S, the weighted transition probability P(s′|s, a) = πP0 (s′|s).
Hence, the joint policy given P0 is the mapping πP0 : S → ∆(S).
Assumption 3.3. Given any joint state pair s, s′ ∈ S, the joint policy πP0 (s′|s) = 0 when P0(s′|s) = 0.

Finally, the controlled sub-state transition is done using a stochastic marginal policy πi,P0 ∈ Πi : S → ∆(Si) that is
derived from πP0 for all i ∈ N .

3.2 Decomposition of the One-Step Cost Function

Similar to single-agent linearly solvable MDPs [22, 23], the control cost is captured by the KL divergence between πP0

and the uncontrolled transition probability function P0, i.e.,

DKL

(
πP0 (·|s)||P0(·|s)

)
:=
∑
s′∈S

πP0 (s′|s) ln
(πP0 (s′|s)

P0(s′|s)

)
= E

s′∼πP0 (·|s)

[
ln
(πP0 (·|s)

P0(·|s)

)]
. (3)

The one-step cost function is then written as q(s, πP0 ) = C(s) + DKL
(
πP0 (·|s)||P0(·|s)

)
. We then define the value function

under πP0 to be state-wise

VπP0 (s) := E
s′∼πP0 (·|s)

[ ∞∑
t=0

γt
[
C(st) + DKL

(
πP0 (·|st)||P0(·|st)

)]
|st=0 = s

]
. (4)

With qmax being the maximum one-step cost, the value function is bounded by qmax/(1 − γ). Note that if the joint policy
πP0 is equal to P0, then the KL control cost is zero and the next joint state s′ is sampled according to s′ ∼ P0(·|s), with
s′ = [s′1, s

′
2, . . . , s

′
n]. Given Assumption 3.3, prohibitive transitions to another joint state in a single transition and the

DKL control cost boundedness conditions are met.

3.3 The KL Evaluation and KL Optimal Bellman Operators

We define the KL evaluation Bellman operator T πP0 for πP0 applied state-wise to the value function as

(T πP0 V)(s) = C(s) + DKL

(
πP0 (·|s)||P0(·|s)

)
+ γ
∑

s′
πP0 (s′|s)V(s′). (5)

The KL optimal Bellman operator, denoted as T , is the Bellman operator given an optimal joint policy, i.e., TV :=
min
πP0∈Π

T πP0 V . Then, the optimal value function V∗ satisfies V∗ = TV∗. Moreover, we denote the obtained optimal joint

policy as π∗P0
. Both the KL evaluation and the KL optimal Bellman operators have the three properties: monotonicity,

distributivity, and γ−contraction. For any two arbitrary value functions V1,V2 ∈ R
|S| where V1 ≤ V2, T πP0 exhibits

monotonicity such that T πP0 V1 ≤ T
πP0 V2. In addition, for any constant c1 ∈ R, and an all-ones vector e, the operator

T πP0 has the distributivity property such that T πP0 (V + c1 · e) = T πP0 V + γ · c1 · e. A single application of the Bellman
operator gives γ−contractions in the L∞-Norm with ||T πP0 V1 − T

πP0 V2||∞ ≤ γ||V1 − V2||∞.
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4 Multi-Agent Simulation-Based Kullback-Leibler Controlled Optimistic Policy Iteration
KLC-OPI

4.1 The Scheme Description

The scheme is run by each agent i ∈ N on iterations k = 0, 1, 2, . . . ,K independently of other agents. At each iteration
k and for agent i, the scheme stores the value function estimate Vi,k used in evaluating the joint policy. Agent i performs
a greedy policy improvement step to obtain its independently calculated joint policy π(i)

P0,k+1 as

G(Vi,k) := arg min
π(i)

P0 ,k+1∈Π

T
π(i)

P0 ,k+1 Vi,k ⊆ S → ∆(S). (6)

Given that the joint state can be decomposed into an agent i ∈ N sub-state si as stated in Assumption 3.1, agent i only
controls their transitions to a sub-state s′i ∈ Si using the marginal policy

π(i)
i,P0,k+1(s′i |s) :=

∑
j∈N\{i}

∑
s′j∈S j

π(i)
P0,k+1(s′i , s

′
j|s). (7)

The agents collectively evaluate their value function estimates by generating |S| synchronous and coupled m−step TD
sampled trajectories using their marginal policies (7) with each trajectory starting at a joint state s ∈ S. The term
synchronous denotes evaluating the value function estimates for all joint states in the state space, while the term coupled
means that the joint state transitions are done simultaneously by all agents. The simulation-based policy evaluation step
results in the per joint state cost function qt(st, π

(i)
P0,k+1) for a timestep t using the m−step TD trajectories. Each agent

uses the discounted sum of the returns to obtain an estimate of (T π
(i)
P0 ,k+1 )mVi,k which we represent using the noise term

ϵm,k ∈ R
|S| as follows,

(T π
(i)
P0 ,k+1 )mVi,k + ϵm,k =

m−1∑
t=0

γtqt(st, π
(i)
P0,k+1) + γmVi,k(st=m). (8)

Agent i’s value function estimate is updated using the noisy returns and results in the estimate Vi,k+1 at the end of
iteration k. We summarize the simulation-based KLC-OPI scheme run by each agent i ∈ N in the following:

KLC-OPI

π
(i)
P0,k+1 = G(Vi,k),

Vi,k+1 = (I − Ak)Vi,k + Ak

(
(T π

(i)
P0 ,k+1 )mVi,k + ϵm,k

)
,

(9)

where I is the |S| × |S| identity matrix, Ak is a |S| × |S| diagonal matrix with joint state learning rates αk(s) ∈ R+ as
its elements, and the rollout value is m ∈ N+. Note that m = 1 corresponds to value iteration with KL control cost
KLC-VI, and letting m→ ∞ gives a policy iteration with KL control cost KLC-PI rendition of the scheme. In addition,
the learning rates’ matrix Ak is the same for all agents.

Similar to [Appendix 1.2 in [23]] for the single-agent linearly solvable MDP case, we show that the optimal joint policy

(6) follows a Boltzmann distribution by applying the Cole-Hopf transformation to the Bellman equation with T π
(i)
P0 ,k+1 .

Lemma 4.1. At iteration k and for any i ∈ N , the joint policy π(i)
P0,k+1 given P0 that minimizes the discounted return of

the policy evaluation step in (9) follows a Boltzmann distribution

π(i)
P0,k+1(s′|s) =

P0(s′|s)(Zi,k(s′))γ∑
s′∈S

P0(s′|s)(Zi,k(s′))γ
, (10)

where Zi,k for agent i is the Cole-Hopf transformation of the value function such that Zi,k(s) = e−Vi,k(s) state-wise in
iteration k.
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Proof. We have state-wise

TVi,k(s) = min
π(i)

P0 ,k+1∈Π

{C(s) + E
s′∼π(i)

P0 ,k+1(·|s)

[
ln
π(i)

P0,k+1(·|s)

P0(·|s)

]
+ E

s′∼π(i)
P0 ,k+1(·|s)

[
γVi,k(·)

]
}

= min
π(i)

P0 ,k+1∈Π

{C(s) + E
s′∼π(i)

P0 ,k+1(·|s)

[
ln
π(i)

P0,k+1(·|s)

P0(·|s)

]
+ E

s′∼π(i)
P0 ,k+1(·|s)

[
ln

1
(Zi,k(·))γ

]
}

= min
π(i)

P0 ,k+1∈Π

{C(s) + E
s′∼π(i)

P0 ,k+1(·|s)

[
ln
π(i)

P0,k+1(·|s)

P0(·|s)(Zi,k(·))γ
]
}. (11)

Define the constant
di,P0,k(s; γ) :=

∑
s′∈S

P0(s′|s)(Zi,k(s′))γ.

The value function under the joint policy that achieves the minimum discounted cost becomes

TVi,k(s) = min
π(i)

P0 ,k+1∈Π

{C(s) + E
s′∼π(i)

P0 ,k+1(·|s)

[
ln
π(i)

P0,k+1(·|s)
P0(·|s)(Zi,k(·))γ

di,P0 ,k(s;γ)

]
− ln di,P0,k(s; γ)}

= min
π(i)

P0 ,k+1∈Π

{C(s) − ln di,P0,k(s; γ) + DKL

(
π(i)

P0,k+1(·|s)||
P0(·|s)(Zi,k(·))γ

di,P0,k(s; γ)

)
}. (12)

Note that the first two terms (C(s) and di,P0,k(s; γ)) do not depend on π(i)
P0,k+1. Thus, the minimum is achieved when the

last term, the KL cost, in (12) is equal to zero. The optimal joint policy calculated by each agent i ∈ N is then given by
(10). □

Remark 4.2. We let the initial value estimates be the same for all agents, Vi,0 = V j,0 for all i, j ∈ N . Given the
initialization, the value function estimate Vi,k for agent i and thus the joint policy π(i)

P0,k
computed using (10) is identical

to other agents’ estimates for all the iterations.

Remark 4.3. The noise value ϵm,k at iteration k in (8) captures two sources of error: the error from simulating only a
single trajectory per joint state instead of averaging over an infinite number of trajectories and the estimation error term
incurred from the estimated value function of the last visited joint state in the simulated trajectory.

4.2 Asymptotic Convergence

Our main result is that each agent’s value function estimates Vi,k and individually calculated joint policy π(i)
P0,k

converge
to the optimal value function and an optimal joint policy respectively under the KLC-OPI iterations.

Theorem 4.4. Assume the initial value function estimate is such that TVi,0 − Vi,0 ≤ 0 for each agent i ∈ N and
αk(s) = O( 1

k ) state-wise. The value function estimate Vi,k and joint policy π(i)
P0,k

iterates of i ∈ N for the KLC-OPI
scheme in (9) asymptotically converge to V∗ and to π∗P0

, respectively.

The convergence to optimal value function builds on two main assumptions. First one is that the initialized value
function estimates i ∈ N satisfy TVi,k=0 − Vi,k=0 ≤ 0. The assumption is not restrictive since the initial value function
estimate can be set to a large value state-wise such that a single application of the KL optimal Bellman operator
will guarantee a lower value function estimate. Our second assumption on the step size is standard in stochastic
approximation and ensures that the steps are square summable but not summable [24, 28].

Similar to optimistic policy iteration with a deterministic policy [Proposition 1 in [19]], applying the operator T π
(i)
P0 ,k+1

m > 1 times in a single iteration of KLC-OPI does not guarantee a contraction in any norm nor monotonic improvement
of the value function estimate, unlike exact policy iteration schemes where the monotonicity property is preserved
[3, 15]. Hence, the KLC-OPI simulation-based policy evaluation step may result in a worse performing value function
estimate, i.e., a larger discounted cost return, compared to the previous iteration’s estimate.

Given the non-contracting, and in general without additional assumptions, non-monotonic improvement challenges
of optimistic policy iteration schemes’ updates, the updated value functions’ performance has to be bounded using
an analysis technique that does not utilize the contraction property. To prove asymptotic convergence to the optimal

6
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value function, we show that the scheme’s iterative updates are upper and lower bounded by two standard stochastic
approximation processes that we later show both converge to the optimal value function for each agent.

We begin by defining the filtration that captures the algorithm’s history up to and before the noise ϵm,k at the end of
iteration k is realized,

Fm,k := {(ϵm,k′ )k′≤k−1}. (13)

Given the filtration, it follows that the noise term has zero mean, E[ϵm,k |Fm,k] = 0, and bounded variance
E[||ϵm,k ||∞|Fm,k] ≤ qmax·e

1−γ state-wise.

Next, we state the upper bound on the policy evaluation step performance in a single iteration which is a restatement of
Lemma 2.c in [24] with our notation.
Lemma 4.5 (Lemma 2.c in [24]). For the policy evaluation step at iteration k in the KLC-OPI scheme, and given the

estimate of agent i ∈ N value function Vi,k, we have (T π
(i)
P0 ,k+1 )mVi,k ≤ Vi,k+

ri,k ·e
1−γ , where ri,k := max

s∈S

[
T
π(i)

P0 ,k+1 Vi,k(s)−Vi,k(s)
]

and e is an all-ones vector.

We now prove that the KLC-OPI policy evaluation step output in (9) is upper bounded by a standard stochastic
approximation process which results in the asymptotic improvement property lim sup

k→∞
TVi,k − Vi,k ≤ 0 for each agent

i ∈ N .
Proposition 4.6. If TVi,k=0 − Vi,k=0 ≤ 0 and the learning rate state-wise is αk(s) = O( 1

k ) such that 0 ≤ αk(s) ≤ 1 for
any iteration k, then the policy evaluation step for any m ∈ N+ in (9) gives

lim sup
k→∞

TVi,k − Vi,k ≤ 0. (14)

Proof. Note that T π
(i)
P0 ,k+1 is an affine transformation such that T π

(i)
P0 ,k+1 Vi,k = q

π(i)
P0 ,k+1

i + γπ(i)
P0,k+1Vi,k. We then have the

following for k = 1, using the policy evaluation update rule in (9),

T
π(i)

P0 ,1 Vi,1 = q
π(i)

P0 ,1

i + γπ(i)
P0,1

[
(I − A0)Vi,0 + A0

(
(T π

(i)
P0 ,1 )mVi,0 + ϵm,0

)]
= q

π(i)
P0 ,1

i + γπ(i)
P0,1

Vi,0 − A0γπ
(i)
P0,1

Vi,0 + A0γπ
(i)
P0,1

(T π
(i)
P0 ,1 )mVi,0 + A0γπ

(i)
P0,1
ϵm,0, (15)

which we rewrite as follows using the fact that (T π
(i)
P0 ,1 )m+1Vi,0 = T

π(i)
P0 ,1 (T π

(i)
P0 ,1 )mVi,0 = q

π(i)
P0 ,1

i + γπ(i)
P0,1

(T π
(i)
P0 ,1 )mVi,0, and by

reorganizing the terms,

T
π(i)

P0 ,1 Vi,1 = (I − A0)(T π
(i)
P0 ,1 Vi,0) + A0

(
(T π

(i)
P0 ,1 )m+1Vi,0 + γπ

(i)
P0,1
ϵm,0
)
. (16)

We know that the optimal Bellman operator is going to be better, i.e., TVi,1 ≤ T
π(i)

P0 ,1 Vi,1. Let yi,k := TVi,k − Vi,k.

Subtracting Vi,1 from both sides of (16), and using the fact that TVi,k = T
π(i)

P0 ,k+1 Vi,k due to the greedy step in (9), we
have

yi,1 ≤ (I − A0)(TVi,0) + A0

(
(T π

(i)
P0 ,1 )m+1Vi,0 + γπ

(i)
P0,1
ϵm,0
)
− (I − A0)Vi,0 − A0

(
(T π

(i)
P0 ,1 )mVi,0 + ϵm,0

)
= (I − A0)yi,0 + A0

[
(γπ(i)

P0,1
− I)ϵm,0

]
+ A0

(
(T π

(i)
P0 ,1 )m+1Vi,0 − (T π

(i)
P0 ,1 )mVi,0

)
. (17)

Since we assume that TVi,0 ≤ Vi,0, i.e., yi,0 ≤ 0, then applying the operator m times on both sides gives (T π
(i)
P0 ,1 )m+1Vi,0 −

(T π
(i)
P0 ,1 )mVi,0 ≤ 0. Thus we obtain the upper bound

yi,1 ≤ A0

[
(γπ(i)

P0,1
− I)ϵm,0

]
. (18)

Define wk := (γπ(i)
P0,k+1 − I)ϵm,k where wk satisfies the same properties as ϵm,k, i.e., zero-mean and bounded variance,

then yi,1 ≤ A0w0 = U1 where U1 is the upper bound on yi,1. Similarly, we have the following upper bound for k = 2

yi,2 ≤ (I − A1)yi,1 + A1w1 + A1

(
(T π

(i)
P0 ,2 )m+1Vi,1 − (T π

(i)
P0 ,2 )mVi,1

)
. (19)
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The upper bound on yi,1 ≤ U1 implies T π
(i)
P0 ,2 Vi,1 ≤ Vi,1 + U1. When we apply the operator T π

(i)
P0 ,k+1 to both sides of the

inequality for k = 2, we obtain the following using the distributivity property T π
(i)
P0 ,k+1 (Vi,k + c · e) = T π

(i)
P0 ,k+1 Vi,k + γ · c · e

for some constant c ∈ R,

(T π
(i)
P0 ,2 )2Vi,1 ≤ (T π

(i)
P0 ,2 )
(
Vi,1 + U1

)
= (T π

(i)
P0 ,2 )Vi,1 + γU1. (20)

Applying T π
(i)
P0 ,2 m times gives (T π

(i)
P0 ,2 )m+1Vi,1 ≤ (T π

(i)
P0 ,2 )mVi,1 + γ

mU1. Then, we can replace the last term in (19) with
γmU1 to get the following bound

yi,2 ≤ (I − A1)U1 + A1w1 + A1γ
mU1

=
(
I + A1(γmI − I)

)
U1 + A1w1. (21)

We let U2 := (I + A1(γmI − I))U1 + A1w1. Repeating the above steps for k = 3, 4, . . . ,K we obtain the upper bound for
any k

(T π
(i)
P0 ,k+1 )m+1Vi,k − (T π

(i)
P0 ,k+1 )mVi,k ≤ γ

mUk

= γm
[(

I + Ak−1(γmI − I)
)
Uk−1 + Ak−1wk−1

]
, (22)

with U0 = 0. Since the noise is zero-mean with bounded variance, γ ≤ 1, and αk(s) = O(1/k) with 0 ≤ αk(s) ≤ 1
state-wise for any k, we have that

lim
k→∞
αk

[
(T π

(i)
P0 ,k+1 )m+1Vi,k − (T π

(i)
P0 ,k+1 )mVi,k

]
≤ γm lim

k→∞

Uk

k
= 0. (23)

Define a noise function as f (wk, γ
m,Uk) := wk + γ

mUk, then we have for any i ∈ N and k

yi,k+1 ≤ (I − Ak)yi,k + Ak f (wk, γ
m,Uk). (24)

Define another sequence Xk+1 = (I − Ak)Xk + Ak f (wk, γ
m,Uk) with X0 = yi,0 for any i ∈ N . We have that yi,k ≤ Xk.

Given (23) and f (wk, γ
m,Uk) is a zero-mean noise function, the sequence {Xk}0,1,... is a standard stochastic sequence

that converges to zero in the limit. Finally, we have lim
k→∞

Xk = 0 and since yi,k ≤ Xk, we obtain lim sup
k→∞

yi,k ≤ 0. □

Establishing the asymptotic policy improvement property of (9) is the key contribution of our proof approach. This
result is similar to the property obtained in [24] for showing convergence of OPI with infinitely long single trajectories.
However, here we consider finitely long trajectories which is in agreement with practical implementation. In the proof,
we overcome the error introduced by finite-trajectories by upper bounding the noisy and finite rollout with a term that
only depends on the discount factor, learning rates, the joint policy from the previous iteration, and the realized noise
up to iteration k. Moreover, we achieve this property using greedy policy improvements (6), i.e., without the need to
perform a lookahead operation for each iteration as is done in [28, 26].

We are ready to provide the proof of Theorem 4.4.

Proof (Theorem 4.4). Given the asymptotic improvement guarantee in (14), for every δ > 0, there exists an iteration k(δ)

such that ri,k ≤ δ for k ≥ k(δ) where we recall that ri,k = max
s∈S

[T π
(i)
P0 ,k+1 Vi,k − Vi,k]. Using the result from Lemma 4.5, we

have (T π
(i)
P0 ,k+1 )m−1Vi,k ≤ Vi,k +

ri,k ·e
1−γ . Then applying the operator on both sides gives (T π

(i)
P0 ,k+1 )mVi,k ≤ T

π(i)
P0 ,k+1 Vi,k +

γ·ri,k ·e
1−γ ≤

T
π(i)

P0 ,k+1 Vi,k +
γ·δ·e
1−γ for k ≥ k(δ).

We then write the update rule from (9) for k ≥ k(δ) as

Vi,k+1 = (I − Ak)Vi,k + Ak

(
(T π

(i)
P0 ,k+1 )mVi,k + ϵm,k

)
≤ (I − Ak)Vi,k + Ak

(
T
π(i)

P0 ,k+1 Vi,k +
γ · δ · e
1 − γ

+ ϵm,k
)
. (25)

For every positive integer k̄, define the random variable sequence

W (k̄)
i,k+1,δ = (I − Ak)W (k̄)

i,k,δ + Ak

(
T
π(i)

P0 ,k+1 W (k̄)
i,k,δ +

γ · δ · e
1 − γ

+ ϵm,k
)
, (26)

8
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for all k ≥ k̄. In addition, let A(k̄) be the event that k(δ) = k̄. Then for any k̄, any sample path in A(k̄), and for all

k ≥ k̄, we have Vi,k+1 ≤ W (k̄)
i,k+1,δ. Next, define the mappings H : R|S| → R|S| and Hπ

(i)
P0 ,k+1 : R|S| → R|S| such that

H
π(i)

P0 ,k+1 Vi,k = T
π(i)

P0 ,k+1 Vi,k +
γ·δ·e
1−γ . Rewriting the sequence in Equation (26) usingHπ

(i)
P0 ,k+1 gives

W (k̄)
i,k+1,δ = (I − Ak)W (k̄)

i,k,δ + Ak

(
H
π(i)

P0 ,k+1 W (k̄)
i,k,δ + ϵm,k

)
. (27)

Since a single application of T π
(i)
P0 ,k+1 is a contraction mapping, a single application of Hπ

(i)
P0 ,k+1 is also a contraction

mapping with a unique fixed point W∗δ = V∗ + γ·δ·e
(1−γ)2 . Given that ϵm,k is a zero-mean noise, the sequence in Equation (27)

converges almost surely to W∗δ for sample paths in A(k̄). Since the union of the events A(k̄) is the entire sample space,
we have lim sup

k→∞
Vi,k ≤ lim sup

k→∞
W (k̄)

i,k,δ = W∗δ . Given that δ can be chosen arbitrarily close to zero, then lim sup
k→∞

Vi,k ≤ V∗.

Similarly, since (T π
(i)
P0 ,k+1 )mVi,k ≥ V∗, we have

Vi,k+1 = (I − Ak)Vi,k + Ak

(
(T π

(i)
P0 ,k+1 )mVi,k + ϵm,k

)
≥ (I − Ak)Vi,k + Ak

(
V∗ + ϵm,k

)
. (28)

Define another random variable sequence Bi,k+1 = (I − Ak)Bi,k + Ak

(
V∗ + ϵm,k

)
with Bi,k=0 = Vi,k=0. The sequence Bi,k

converges asymptotically to V∗ and we have lim inf
k→∞

Vi,k ≥ V∗. Given the asymptotic upper and lower convergence

bounds to V∗, the update rule in (9) also converges to the optimal value function V∗ for each i ∈ N and we obtain an
optimal joint policy π∗P0

using (10). □

Note that we do not use any structural feature of multi-agent MDPs with KL control cost in the proof, and thus the
convergence result for Theorem 4.4 holds for general MDPs.
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Figure 2: ASYNC-KLC-OPI performance on the multi-agent MDP with KL control cost variant of the Stag-Hare game
averaged over 10 simulation runs.

5 The Asynchronous KLC-OPI Scheme

For simulation-based policy iteration schemes, it can be computationally expensive to run a synchronous policy
evaluation step with |S| m−step TD sampled trajectories especially if the joint state space is large. For this reason, we
focus on the asynchronous policy evaluation step of value function estimates using 1 ≤ D ≤ |S| joint states in each
iteration k. In a single iteration, a larger D value means that a larger subspace of the joint state space is evaluated at the
expense of additional sampling per iteration.

In order to prove the convergence of the asynchronous version of the scheme, we assume that the initial state distribution
ρ is a uniform distribution. LetDk ⊆ S be the set of joint states that are evaluated at iteration k under the current joint
policy π(i)

P0,k+1 for any i ∈ S. The setDk of each iteration satisfies the following assumption.

9
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Assumption 5.1. The cardinality of the sampled joint states’ set D = |Dk | is a constant with the set having unique joint
state elements in each iteration k = 0, 1, 2, . . . ,K.

Assumption 5.1 ensures that no joint state is evaluated more than once per iteration, and that the number of evaluated
joint states is fixed in the proposed asynchronous policy evaluation step.

Similar to the synchronous policy evaluation step in (9), each joint state s ∈ Dk is evaluated using its independently
simulated m−step TD trajectory and its corresponding value function estimate is updated at the end of the current
iteration. For joint states that are not in the setDk, their value function estimates are kept the same. The asynchronous
KLC-OPI scheme is then

ASYNC-KLC-OPI


π(i)

P0,k+1 = G(Vi,k),

Vi,k+1(s) =
(
1 − αk(s)

)
Vi,k(s) + αk(s)

(
(T π

(i)
P0 ,k+1 )mVi,k(s) + ϵm,k(s)

)
∀s ∈ Dk,

Vi,k+1(s) = Vi,k(s) ∀s < Dk.

(29)

Note that the policy improvement step taken by each agent is with respect to all joint state elements of the current value
function estimate regardless of whether a joint state’s value estimate was evaluated or not. We can re-write the policy
evaluation step in (29) as follows

Vi,k+1(s) =Is∈Dk

[(
1 − αk(s)

)
Vi,k(s) + αk(s)

[
(T π

(i)
P0 ,k+1 )mVi,k(s) + ϵm,k(s)

]]
+ Is<Dk

[
Vi,k(s)

]
, (30)

where Is∈Dk is the indicator function that specifies if the joint state s is evaluated in iteration k or not. In the following,
we establish the same asymptotic convergence guarantee as in Theorem 4.4 for the iterates in ASYNC-KLC-OPI.
Corollary 5.2. Assume that the initial value function is such that TVi,0 − Vi,0 ≤ 0 for each agent i ∈ N , αk(s) = O( 1

k )
state-wise, and that the initial joint state distribution ρ is a uniform distribution, then the ASYNC-KLC-OPI scheme
in (29) value function Vi,k and joint policy π(i)

P0,k
iterates asymptotically converge to V∗ and to π∗P0

for all i ∈ N ,
respectively.

Proof. We can write the policy evaluation update rule of the asynchronous scheme in (29) similar fashion to the
synchronous case (9),

Vi,k+1 = (I − AkH)Vi,k + AkH
(
(T π

(i)
P0 ,k+1 )mVi,k + gm,k

)
, (31)

with H being the |S| × |S| diagonal joint state policy evaluation probability matrix, i.e. the matrix H element h(s) > 0
state-wise is the stationary probability that the joint state s is sampled according to. The added noise function gm,k is
given by

gm,k := ϵm,k +
(
(H−1Xk − I) · (−Vi,k + (T π

(i)
P0 ,k+1 )mVi,k + ϵm,k)

)
, (32)

with Xk being a |S| × |S| diagonal matrix with Bernoulli random variable elements xk(s) state-wise at iteration k. The
random variable xk(s) = 1 if the joint state s is evaluated during iteration k, and it is zero otherwise. Since we assume
that the initial state distribution ρ is a uniform distribution in the asynchronous case, the expected value of the Bernoulli
random variables is E[xk(s)|Fm,k] = h(s) state-wise. We then have H−1 · E[Xk |Fm,k] = H−1 · H = I, which means that
gm,k is also a zero-mean noise function such that E[gm,k |Fm,k] = 0. Similar to the noise function ϵm,k, the added noise

function gm,k variance is also bounded since the value function estimate and (T π
(i)
P0 ,k+1 )mVi,k in Equation (32) are bounded

by the value qmax
1−γ state-wise.

Given Assumption 5.1, the set’s cardinality |Dk | is a constant throughout the iterations, then the diagonal matrix H has
equal and constant elements throughout the iterations k = 0, 1, 2, . . . ,K. In other words, the matrix elements h(s) = h(s′)
for all (s, s′) ∈ S pairs. DefineAk = Ak ·H as the product of the diagonal learning rate matrix Ak and the diagonal joint
state policy evaluation probability matrix H. We can then write the policy evaluation step as

Vi,k+1 =
(
I −Ak

)
Vi,k +Ak

(
(T π

(i)
P0 ,k+1 )mVi,k + gm,k

)
. (33)

Since H has constant elements throughout the iterations, thenAk is a matrix that commutes with the joint policy π(i)
P0,k+1

in each iteration such thatAk · π
(i)
P0,k+1 = π

(i)
P0,k+1 · Ak. SinceAk · π

(i)
P0,k+1 satisfy the commutative property and the added

noise function gm,k also has zero mean with bounded variance, we can directly use the same steps as in Proposition 4.6
to show that lim sup

k→∞
TVi,k − Vi,k ≤ 0 for each agent i ∈ N . The convergence to the optimal value function V∗ for each

agent and to an optimal joint policy π∗P0
follows the same steps as in Theorem 4.4. □
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6 Simulations

6.1 A Multi-Agent MDP: Stag-Hare

We consider a two-agent MDP with KL control cost variant [12] of the Stag-Hare game [21]. There are |N| = 2 hunters
who hunt on a 5 × 5 gridworld and can only move to adjacent grids in a single timestep.

Hunter i’s sub-state is their grid location si = 0, 1, . . . , 24 such that there are |Si| = 25 possible grid locations. For the
two hunters, this gives a total of |S| = |S1| × |S2| = 625 joint states. The uncontrolled transition probability Pi,0 forces
agent i ∈ N to remain in their current sub-state w.p. 0.9, and transition to one of the b adjacent sub-states w.p. 0.1/b.

The gridworld has four hares and one stag at sub-state locations sh ∈ {0, 4, 20, 24} and ss ∈ {12}, respectively. When
one of the hunters reaches a hare’s location, both hunters obtain a negative intrinsic joint state cost of −2 added to the
KL control cost per timestep. If both hunters cooperate and move together to the stag’s location, they would obtain a
lower intrinsic joint state cost of −10 added to the KL control cost per timestep. The intrinsic joint state cost incurred
for each agent i ∈ N in a single transition is

C(s) = −2 ·
n∑

i=1

I{si ∈ sh} − 10 · I
{[ n∑

i=1

I{si ∈ ss}
]
> 1
}
, (34)

where I{·} being the indicator function.

6.2 ASYNC-KLC-OPI Simulation Results

We set the discount factor to be γ = 0.95, and the fixed episode time horizon m to be the average of a geometrically
distributed random variable with distribution geom(1−γ) such that m = 20. We test the scheme using D = [20, 40, 60, 80]
joint states for K = 3000 iterations and show averaged results over 10 simulation runs in Figure (2).

In Figure 2(a), ASYNC-KLC-OPI converges faster to a minimum cost return as the number of sampled joint states D in a
single iteration K increases. With a larger D value, the scheme evaluates a larger subset of the joint state space in one
iteration, and as a result it obtains a better joint policy for the next iteration compared with a smaller D value. However,
the average runtime per iteration increases as D increases and is 6.66, 14.57, 16.18, and 20.75 seconds for the selected
D values, respectively.

Figure 2(b) compares the obtained stochastic policy for D = 80 joint states against the optimal deterministic joint
policy. The optimal deterministic joint policy executes grid transitions that direct the agents to the stag’s sub-state in
the lowest number of time steps. It can be seen from the figure that the stochastic joint policy gives a slightly better
performance for the joint states [20, 4], [5, 12] and [18, 14] in terms of the undiscounted cost return. For the joint state
[11, 13] where each hunter starts in a cell neighboring the stag, the two policies achieve a similar performance. The cost
return difference is due to the increased KL cost when using the optimal deterministic joint policy. Agents using the
optimal deterministic joint policy transition to a selected joint state w.p. 1 which results in a higher KL cost compared
with a stochastic joint policy.

For Figure 2(c), we plot the L∞-Norm for the difference between iteration k value function estimates and the value
function from iteration K = 3000. As shown, the convergence rate to the iteration K = 3000 value function estimate is
faster with a larger D value.

7 Conclusion

We presented a synchronous and an asynchronous simulation-based optimistic policy iteration schemes for multi-agent
MDPs with KL control costs that are run independently by each agent. The separation between control costs and joint
state costs rendered the optimal joint policy to have a close-form solution in the form of a Boltzmann distribution that
depends on the current value function estimate and uncontrolled transition probabilities. Given standard assumptions on
the learning rates and the initial value function estimate, we showed the asymptotic convergence of both schemes to the
optimal value function and an optimal joint policy. The convergence result applies to any simulation-based OPI scheme
with finite and noisy rollout returns on any MDP. For different number of sampled joint states in an iteration, simulation
results on a multi-agent MDP variant of the Stag-Hare game showed that the asynchronous scheme converges to a
minimum cost return for the agents, with better performance than the optimal deterministic joint policy.
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