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Motivating Advertisement Example

Recovering bandits [Pike-Burke et al. 2019]

Classic Restless
bandits’ problem
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s1[t] < sz t] regardless if the
a[t] = 1 a[t] = 0 aylt] = 1 et
We obtain the rewards based on active or passive actions activated or left
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Rl,act (51 [t]) Rz,pass (52 [t]) RN,act (SN [t])




Setting

Sequential decision-making problem for timestepst = 0,1, ..., o
N choices each modelled as a restless bandit referenced byi = 1,2,...,N
Control policy  can choose M out of N restless bandits in each timestep

Objective is to maximize total discounted rewards
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Restless Bandits” Challenges

e Restless bandits evolve for two transition kernels
Piace(silt])  For ai[t] =1

Pi,pass(si [t]) For a; [t] =0

 Exponentially growing state space in N
K states per arm gives K" total possible states

* Finding optimal control policy ™ for restless bandits is intractable



Index Policies

 Decompose original N-dimensional restless bandit problem
* Define a state index for each bandit independently

e Sort indices in an ascending order. Activate M highest-indexed bandits
* Complexity becomes NlogN

* The Whittle index W (s) for state s is a useful tool for restless bandits
* Asymptotically optimal control performanceas N — oo
e Difficult to calculate and unknown for most problems



Whittle Index & Indexability

e System of one bandit N =1
* Agent pays an activation cost A when the selected actionis aft] =1

* Activation policy goal is to maximize the discounted net reward
E[) B (rlt] - Aa[t])
t=0

 An arm becomes less likely to be activated when A increases

Whittle index W (s) for state s is the highest price the agent pays to activate the bandit




Timestep

t=0

Initial bandit
state s

Whittle Index & Indexability

Consider two activation possibilities for a single arm

Use optimal activation policy for later timesteps

- Qk,pass (S)

Use optimal activation policy for later timesteps

|
Ql,p ass (S )

For indexable arms, the difference

- Qi pass(s) = 0iF A S W(s) |




Whittle Accurate Controller

» Solving for Whittle indices yields the asymptotically optimal controller
e Use a neural network to learn Whittle index function under all activation costs

* Neural network that produces a near-optimal discounted net reward is a bandit controller

Whittle-Accurate Theorem

Near-optimal neural network for a restless bandit is also Whittle-accurate for all
activation cost values and all states




NeurWIN Training

NeurWIN REINFORCE-based algorithm that trains in an episodic fashion

A minibatch of episodes have a different activation cost from previous minibatch

Perform gradient ascent on objective function Vg Z,—[’Sl Q(Sl, A) for all initial states 51,1

Episode with time horizon T has return Y.1_d B¢ (r[t] — Aa[t])

An arm with activation cost \
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NeurWIN’s Control Approach

Agent 1

S
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learned indices
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Experiment Results

* Three recently studied restless bandits' problems
Threesets(N =4,M =1),(N=10,M =1), (N = 100,M = 25)

* NeurWIN training parameters
* Initial learning rate L = 0.001
* Discount factor 5 = 0.99
 Adam optimizer for gradient ascent step

 Compare with other RL algorithms and baseline from each study



Deadline Scheduling

* Schedule M vehicles for N charging spots being restless bandit. Whittle index is known
* Vehicle’ state is the time left until it leaves the station and electric charge needed

 Reward for charging. Penalty if car is not charged by the declared leaving time

N=4 M-=1 N=10 M-=1 N=100 M=25
£7 21 3 p—
3 i T — NeurWIN
E N a r._.!"ln.i-!-u-l"'-u-u-i'l-—-r-u.lq
32 % j § T T B AQL
i | 2|/ ——-- QWIC
E : I [ s Bahofe N “?]BQL
g21 21 _ i SRR S s
E ' | E === WOLP-DDPG
§ | —-— Deadline Index

I I I I I ‘:\"' I I I I I
0 500 1000 1500 2000 l$ 0 500 1000 1500 2000
Training Episodes

-350

0 500 1000 1500 2000

—8650

 NeurWIN converges to Whittle index performance in approximately 600 episodes
e Other learning algorithms show no improvement



Recovering Bandits

* Time-varying behavior of a customer interested in products given as N restless bandits

* Bandit state is the time since it was last activated bounded by z,,,,,, = 20 timesteps

* 20-lookahead oracle picks best leaf from a tree with 229 leaves. Whittle index is unknown.
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* NeurWIN outperforms all baselines in terms of total discounted rewards
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Wireless Scheduling

Wireless scheduling over fading channels with N clients modelled as restless bandits

Client state is the payload given in remaining bits and the current channel transmission state

Holding cost ¢ = 1 for each timestep a client’s payload isn’t fully transmitted.

No known Whittle index

Total Discounted Rewards
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Results With Noisy Simulators

e Case when NeurWIN is trained on an imprecise simulator

 Added Gaussian noise of 10%, 20%, 40%

e Testedon N = 100, M = 25 setting only
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e Slight performance degradation yet superior to baselines



Summary

* Asymptotically index-based optimal control policy for N restless bandits

Proposed NeurWIN Deep reinforcement learning method for learning Whittle indices

Demonstrated a superior control performance for three studies compared to baselines
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