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Recent multi-agent reinforcement learning (MARL) algorithms have been utilized to solve certain Markov
games that are known to converge to the optimal solution. These Markov games include the special case
where agents obtain the same cost or reward (i.e. identical-interest Markov games) [10], and the case where
two agents act adversarially (i.e. zero-sum Markov game setting) [5]. However, for the more realistic setting
of general-sum Markov games, where agents have different cost or reward functions, finding a solution con-
cept was recently shown to be PPAD complete [1]. This intractability result mainly stems from when agents
interact in environments that are dynamic and uncertain, along with having incomplete information about
other agents’ policies.

One of the key observations that I made in my research thus far is that in order to search for tractable
solutions, one must examine a certain class of general-sum Markov games, exploit the latent structure in
the considered class, and then develop solvers that run in polynomial time using either general-purpose or
high-performance computing platforms. Hence, in order to design and implement tractable MARL algo-
rithms for real-world cases, it is necessary to develop special purpose MARL algorithms that apply only
to the considered class of general-sum Markov games. However, despite the promise of specialized MARL
algorithms providing tractable solutions, convergence guarantees and finite-time analysis for such algorithms
appear as challenges that require further research. Such challenges lead to ask the following question:

How can we design provably efficient multi-agent reinforcement learning algorithms for spe-
cial classes of general-sum Markov games, and ensure their scalable deployment onto high-
performance computing systems?

My research aims to address these challenges by developing novel MARL algorithms within the theoretical
framework of Markov games. Specifically, I focus on learning methods that leverage game-theoretic insights
to achieve scalable and sample-efficient solutions. My research has led to publications that propose and imple-
ment multi-agent reinforcement learning algorithms for restless multi-armed bandits (RMABs), general-sum
Kullback-Leibler (KL) controlled Markov games, and identical-interest multi-agent KL controlled systems.
I also proposed the first deep reinforcement learning algorithm for learning the Whittle index of RMABs [8].
Below, I summarize my research achievements so far in three main categories.

1. Kullback-Leibler controlled multi-agent reinforcement learning:

In [7], I investigated a new class of multi-agent MDPs called Kullback-Leibler (KL) controlled MDPs, where
agents are able to choose a new policy from their policy space given a base policy that prevents prohibitive
transitions. By using KL-divergence as a regularizer, I was able to show that the optimal joint policy has
a closed-form that only depends on the base policy and the agent’s current value function estimate. I have
also proposed a new optimistic policy iteration scheme that iteratively updates the value function and joint
policy estimates, and proved the scheme’s convergence to the optimal value function and an optimal policy.

In [6], I developed a new fictitious play variant for KL-controlled Markov games, and proved, given standard
conditions on the learning rates, that the learning dynamics asymptotically converge to a near stationary
Nash equilibrium. In each learning stage, each agent maintains beliefs on all other agents, and calculates
their best response to their current beliefs. Agents then transition to a new state, and each agent up-
dates their beliefs and value function estimates given the realized new state. Interestingly, since this is a
general-sum Markov games’ setting, each agent receives a different cost (or reward) value, and the conver-
gence proof follows from the potential-game-like property of the KL-controlled Markov games’ class that I
proposed. Moreover, agents independently learn their best responses without coordinating with other agents.

2. Index-based multi-agent reinforcement learning:

Finding the optimal policy for RMABs was proven to be PSPACE hard [4] due to the exponential dimension-
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ality increase in the state-action space with more arms. Previous work would only consider special instances
of restless bandits, and they would find the Whittle index under such assumptions. In this research project, I
circumvented this issue by training each arm’s neural network independently of other arms. I then developed
two deep multi-agent reinforcement learning algorithms for learning index policies for RMABs which were
trained using the high-performance computing clusters at Texas A&M University.

In [8], I presented the first index-based deep reinforcement learning algorithm, NeurWIN, that learns the
Whittle index function (and policy) for virtually all RMAB problems. I also designed and implemented the
arms as separate training environments, and found that the training converges to the optimal control policy.
The arms are required to be differentiable with respect to the neural network parameters. To solve this issue,
I modified the framework to include a differentiable activation function (sigmoid function) when calculating
the index from the neural network. Since no testing environments existed publicly for Whittle index training
and testing, I made my implementation of NeurWIN and the baselines available online.

In [9], I presented a new deep MARL algorithm called DeepTOP: Deep Threshold Optimal Policy. DeepTOP
learns a broader set of control policies, called threshold policies, than the Whittle index policy for RMABs.
I exploited an important feature of threshold policies called the monotone property of actions. If an agent
assigns a value to each state in the state space and compares those values against a certain threshold, then the
agent would pick the same binary action for a given state and all states with a larger value. The monotone
property led to finding a gradient which is tractable to compute, hence minimizing the number of samples
required to learn the optimal threshold policy. The implementation code was made available online as well.

3. Research contributions in wireless networks’ optimization:

In [2] and [3], we introduced a new framework of second-order wireless network optimization for new per-
formance metrics, such as the Age-of-Information (AoI) and timely throughput. For clients being served
by an access point (AP), second-order optimization entails finding the mean and temporal variance of each
client subject to a set of constraints on the wireless channel. The model incorporates the random processes
associated with wireless transmissions such as channel qualities and packet deliveries.

In the two publications, I characterized the Gilbert-Elliot channel model that determines when a client is
able to receive packets from the AP. We also found a closed-form expression of the channel’s mean value over
all clients, and the channel’s temporal variance. Our framework then solves a linear optimization problem
given the channel and clients’ constraints. In the simulation results, I have shown that our scheduling policy,
Variance-Weighted Deficit (VWD), outperforms all state of the art network scheduling policies. In addition,
we validate our framework’s theoretical results by showing how the empirical and theoretical AoI values are
virtually the same for one client. I have made my implementation publicly available so that other researchers
can contribute to this wireless networks’ framework.

Future research and plans:

In my postdoctoral research, my short-term goal is to consider other Markov games’ classes and obtain
new tractable solutions that can be deployed onto HPC and networked systems. This includes addressing
the challenges of integrating advanced MARL and ML models with large-scale computing clusters, while
ensuring that these models are both computationally efficient and capable of high-speed inference. Due to
my experience with network programming at my current research group, particularly through the integration
of Software-Defined Networks (SDNs) and Named Data Networking (NDN), I have gained experience in
developing custom networking protocols for my proposed schemes. Furthermore, I have gained extensive
knowledge of essential tools such as Kubernetes, Docker, and SLURM when using the HPC cluster at Texas
A&M University for my research work. The overarching goal of my research is to transition into a full-time
research position and continue developing my research agenda. I am confident that through interdisciplinary
collaborations and a focus on efficient and scalable solutions, I will be able to advance the state of the art
in MARL and also in making impactful contributions to the MARL and HPC research communities.
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https://github.com/khalednakhleh/NeurWIN
https://github.com/khalednakhleh/deeptop
https://github.com/khalednakhleh/aoi_timely_throughput_and_beyond_journal
https://github.com/khalednakhleh/aoi_timely_throughput_and_beyond_journal
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